Solution Sheet 8
Exercise 8.1

Let u : [0,00) x R — R be a smooth function such that

ou @

a(ty) - b(tvu(ta y)) ) Ay (ta y) =0 (tvu(ta y))

where b, o are also smooth (in space and time). Show that the process X defined by
Xt = U,(t, Wt)

solves the SDE

Jdo

1
dXt = <b(t, Xt) + ia(t,Xt) oz

(t, Xt)> dt + O'(t, Xt)th
for Xo = u(0,0).
Proof. We wish to apply the It6 Formula for u(¢, W;). Using the given derivative relations, then

ou

—(t, W) =0 (t,u(t, W,

S W) = o (tu(t. 7))
which is an adapted and continuous process hence progressively measurable, whilst also satisfying
pathwise integrability in time. Additionally,

2u
ng(t,w _ jy (a(t,u(t.y))
— g; (t,u(t,y)) gZ(ta Y)
do

=2 (t,u(t,y)) o (t,u(t,y)).

Thus we can apply the It6 Formula to achieve that

t t
u(t, W) = u(0, Wy) +/ J(s,u(s,Ws))dWs+/ b(s,u(s, Ws))ds
0 0
1 ("o
5 | Gl uls W)o(s,uls W)W,
for which using that [W]s = s and substituting in X gives the result.

Exercise 8.2

Solve the SDE )
dX; = (\/1 + X2+ 2Xt> dt + /1 + X2dW;

for Xy = x deterministic. Hint: Ansatz available upon request!



Proof. The idea is to use Exercise 8.1 with the function u(t,y) = sinh(c+t+ y) making the Ansatz
X; = sinh(C + t + W;) where sinh(z) = ew_;fz. We can arrive at this Ansatz by comparing to

Exercise 8.1 and seeing that we would like o(t,x) = b(t,z) = v/1 + 22, and using the hyperbolic
trigonometric identities. Indeed we use the function

u(t,y) = sinh(C +t + y)

so that

ou
ot
and similarly

(t,y) = cosh(C 4+t +y) = /1 + (sinh(C + t + y))2 = /1 + (u(t, y))?

ZZ(t,w — VT (ult.9)?

which does indeed give us, in the notation of Exercise 8.1, that b(t,z) = o(t,z) = V1 + 22 so

9 (o) = 2
ox""’ _\/1+1;2.

Thus applying Exercise 8.1 with X; = sinh(C + t + W;) gives the result, choosing C' such that
x = u(0,0) = sinh(C) so C = sinh ™! (z).
]

Exercise 8.3

Similarly to Exercise 1.3, we introduce the SDE
dXt = b(Xt)dt + O'(Xt)th

where b and o are assumed Lipschitz and of linear growth such that the existence and uniqueness
of the SDE holds, as well as the flow map ® where ®,¢(u) is the solution of the SDE at time ¢ with
‘initial condition’ X3 = u, and for s = 0 we simply use ®;(u). Prove the following:

1. For every s > 0, the processes @ .(u) and ®._4(u), starting from s, have the same distribution.
2. For every s > 0, the processes ®;.(®s(u)) and ®.(u), starting from s, are indistinguishable.

3. For every t > 0, there exists a constant C} such that for all u, v,

E

sup ‘(I)s(u) - (I)s(v)P] < CtE Uu - U|2]
s€[0,t]

Proof.

1. We write out the identities satisfied by the processes, that is

vt =t [ 0@t [ ot@aw,

and
t—s t—s
Dy _s(u) =u +/0 b(Py(u))dr +/0 o (®,)dW,.



Using the substitution / = r — s, then

t—s t—s
Oy (u) =u+ / b(Ps s1i1(u))dl +/ 0(Ps syi(u))dWeqy.
0 0
Now we introduce the new Brownian Motion
I/’Vl = W5+l - Ws

(one can check direction that this is a Brownian Motion for the filtration (F;) = (Fs4;)) such
that

[ ottt = [ ot@ownd (W4 w) = [ o@otan

In particular @, .(u) and ®._4(u) satisfy the same SDE just with a different Brownian Motion,
so by the uniqueness and hence uniqueness in law of solutions so SDEs, the two processes
have the same distribution.

. We observe that

and

hence
Dyt (Ps(u)) — Po(u) = / b(Ps,r(Ps(u))) — b(Pr(u))dr ""/ 0(Psr(Ps(u))) — o(Pr(u))dW;.

We can now take the square of both sides, using that (a + b)? < 2a? + 2b%, and Hoélder’s
Inequality in the time integral to see that

|t (@s(w) — Pe(w)]” < 2(t — S)/ [6(Psr (Ps())) = b(Pr(w))Pdr
2

n / (Do (Ba(1))) — (B, (u))dWV,

Now we may take expectation and apply the Ito Isometry, followed by using the Lipschitz
properties of b and o, to deduce the existence of a constant C' dependent only on t — s and
the Lipschitz coefficients of b and o such that

E [[®y (@, (1) - ®y(u)?] < C / B [[Bap (a()) — By () 2] dr

having also used Fubini-Tonelli to interchange expectation and integration. Now, exactly as
we did in Exercise 1.3, we apply the Gronwall Inequality with o = 0 as the above reads

thC/:w,«dr



with ¢y = IE [|®4(Ps(u)) — P¢(u)[?], to deduce that
E [|@4(Ps(u)) — @¢(u)]?] = 0.
This implies that
[t (@5 (u)) — @e(w)* =0

P —a.s., and in particular there is a set §2; of full probability on which the identity holds. To
show indistinguishability we need a set of full probability such that the identity holds for all
t. In particular we may take all rational ¢,, and define

Q= ﬂ Q,
s<tn€Q

which is a set of full probability such that |®;.(®s(u)) — ®¢(u)|? = 0 holds for all rational
times everywhere on ). By continuity of the processes then this equality must hold for all
times, hence the result.

3. Similarly to the above, we have that

|®g(u) — ®g(v)|> < 3lu—v|? + 3s /Os|b(<1>r(u)) — b(®,(v))|2dr

2
+3

/0 (@0 (1) — o(@p(0))dW,

Now we take supremum over s € [0, ¢] on both sides to see that

t
sup |Pg(u) — (IDS(U)\Q < 3lu — v|2 + 3t/ |b(P,(u)) — b(@r(v))|2dr
s€[0,t] 0

2

+ 3 sup
s€[0,t]

[ ot~ ot eaw,

followed by expectation, then applying Doob’s Maximal Inequality and the It6 Isometry, as
well as the Lipschitz assumptions, then

E | sup |®y(u) — Py(v)?

t
< 3E [lu—v*] + C/ E|®,(u) — ®,(v)|*dr
s€[0,¢] 0

¢
§3E[\u—v\2]+0/ E
0

sup ’(I)s(u) - (IDS(U)’2 dr
s€[0,7]

after which applying Gronwall’s Inequality gives the result.

Exercise 8.4
Consider the Ornstein-Uhlenbeck SDE
dXt = —CLXtdt + O'th

for constants a, o, and posed for an initial condition Xy ~ N (zo,v0) independent of W.



1. Show that X satisfies, IP — a.s.,

t
X, =e %X, + o*e_at/ e®dWs.
0

2. Show that )
Cov(X,, X;) = e~ ot+) [vo + ;—(e%(t“) - 1)} .
a
Proof.
1. We apply the It6 Formula for f(t,z) = e®x, following the same Ansatz as for Exercise 1.5.
Then 5 5 o
& (t,ff) = aeatl’, %f(t,x) = eat, @f(t,x) =0

so by the It6 Formula for f(¢, X}),
t t
e X, = e*0X, +/ ae®®X.ds +/ e dX,
0 0
t t
=X +/ ae™ X, ds +/ e® (—aXs + odWy)
0 0

t
=Xo+ 0’/ e**dWy
0

a

for which multiplying by e~% gives the result.

2. Of course Cov(Xs, X;) = E(X;X;) — E(Xs)E(X;) and from the first part, using that the
stochastic integral is a martingale hence of constant (zero) expectation,

E(X;) = e g

therefore
E(X,)E(X;) = e %942, (1)

Additionally,
t s t s
E(X,X;) = e ) [Xg—i—aQ / e AW, / e dW, + Xoo / e AW, + Xoo / e“’”dWr]
0 0 0 0
t s
= IR [Xg + 02/ eardWT/ e“’"dWT}
0 0

due to independence of Xy and W, hence independence of X and the stochastic integral. We
use that for a general square integrable martingale M with s < t,

E(MM;) = E [E(M, M| Fy] = E [ME(M|Fy] = E(M).

So applying this result to the stochastic integral, followed by the It6 Isometry,

t s s 1
E [ / e dW, / e‘"dWT} = / e dr = — (e —1).
0 0 0 2a



Thus,
o2

E(X,X,) = e %) |B(X2) + 5
a

(62(13 _ 1)
from which we subtract (1) and observe that
v = E(X§) — xj

to conclude.

Exercise 8.5

Let M be a continuous local martingale. Define the process N by N; = eMt_%[M}‘, known as
the exponential martingale.

1. Prove that IV is a continuous local martingale.
2. Show that N is a genuine martingale if and only if E(NV;) = 1 for all ¢ > 0.

Proof.

1. Define the semi-martingale Y by Y; = M; — $[M], and function f(z) = €%, so applying the
It6 Formula for f(Y),

t 1 t
eYt = Yo 1 / eVdY, + 2/ eYSd[Y]S
0 0

t 1 t 1 t
= Mo +/ e dM, — / e d[M], + / e¥*d[M],
0 2 Jo 2 Jo

t
=eMo 4 / e¥*dM,
0

where we have used that [Y] = [M]. This is a continuous local martingale.

2. If N is a martingale it has constant expectation, so E(N;) = 1. We prove the converse. As N
is a non-negative continuous local martingale it is a super-martingale, as for (7,,) a localising
sequence of stopping times and by Fatou,

E(N;|F) < lim B (N/"|F,) = lim NJ" = Nj.
n—0o0 n—0o0

We now use that a super-martingale of constant expectation is a martingale to conclude.



