
Solution Sheet 8

Exercise 8.1

Let u : [0,∞)× R → R be a smooth function such that

∂u

∂t
(t, y) = b (t, u(t, y)) ,

∂u

∂y
(t, y) = σ (t, u(t, y))

where b, σ are also smooth (in space and time). Show that the process X defined by

Xt := u(t,Wt)

solves the SDE

dXt =

(
b(t,Xt) +

1

2
σ(t,Xt)

∂σ

∂x
(t,Xt)

)
dt+ σ(t,Xt)dWt

for X0 = u(0, 0).

Proof. We wish to apply the Itô Formula for u(t,Wt). Using the given derivative relations, then

∂u

∂y
(t,Wt) = σ (t, u(t,Wt))

which is an adapted and continuous process hence progressively measurable, whilst also satisfying
pathwise integrability in time. Additionally,

∂2u

∂y2
(t, y) =

∂

∂y
(σ(t, u(t, y)))

=
∂σ

∂y
(t, u(t, y))

∂u

∂y
(t, y)

=
∂σ

∂y
(t, u(t, y))σ (t, u(t, y)) .

Thus we can apply the Itô Formula to achieve that

u(t,Wt) = u(0,W0) +

∫ t

0
σ(s, u(s,Ws))dWs +

∫ t

0
b(s, u(s,Ws))ds

+
1

2

∫ t

0

∂σ

∂y
(s, u(s,Ws))σ(s, u(s,Ws))d[W ]s

for which using that [W ]s = s and substituting in X gives the result.

Exercise 8.2

Solve the SDE

dXt =

(√
1 +X2

t +
1

2
Xt

)
dt+

√
1 +X2

t dWt

for X0 = x deterministic. Hint: Ansatz available upon request!
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Proof. The idea is to use Exercise 8.1 with the function u(t, y) = sinh(c+ t+ y) making the Ansatz

Xt = sinh(C + t +Wt) where sinh(x) = ex−e−x

2 . We can arrive at this Ansatz by comparing to

Exercise 8.1 and seeing that we would like σ(t, x) = b(t, x) =
√
1 + x2, and using the hyperbolic

trigonometric identities. Indeed we use the function

u(t, y) = sinh(C + t+ y)

so that
∂u

∂t
(t, y) = cosh(C + t+ y) =

√
1 + (sinh(C + t+ y))2 =

√
1 + (u(t, y))2

and similarly
∂u

∂y
(t, y) =

√
1 + (u(t, y))2

which does indeed give us, in the notation of Exercise 8.1, that b(t, x) = σ(t, x) =
√
1 + x2 so

∂σ

∂x
(t, x) =

x√
1 + x2

.

Thus applying Exercise 8.1 with Xt = sinh(C + t + Wt) gives the result, choosing C such that
x = u(0, 0) = sinh(C) so C = sinh−1(x).

Exercise 8.3

Similarly to Exercise 1.3, we introduce the SDE

dXt = b(Xt)dt+ σ(Xt)dWt

where b and σ are assumed Lipschitz and of linear growth such that the existence and uniqueness
of the SDE holds, as well as the flow map Φ where Φs,t(u) is the solution of the SDE at time t with
‘initial condition’ Xs = u, and for s = 0 we simply use Φt(u). Prove the following:

1. For every s ≥ 0, the processes Φs,·(u) and Φ·−s(u), starting from s, have the same distribution.

2. For every s ≥ 0, the processes Φs,·(Φs(u)) and Φ·(u), starting from s, are indistinguishable.

3. For every t ≥ 0, there exists a constant Ct such that for all u, v,

E

[
sup
s∈[0,t]

|Φs(u)− Φs(v)|2
]
≤ CtE

[
|u− v|2

]
Proof. hi

1. We write out the identities satisfied by the processes, that is

Φs,t(u) = u+

∫ t

s
b(Φs,r(u))dr +

∫ t

s
σ(Φs,r)dWr

and

Φt−s(u) = u+

∫ t−s

0
b(Φr(u))dr +

∫ t−s

0
σ(Φr)dWr.
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Using the substitution l = r − s, then

Φs,t(u) = u+

∫ t−s

0
b(Φs,s+l(u))dl +

∫ t−s

0
σ(Φs,s+l(u))dWs+l.

Now we introduce the new Brownian Motion

W̃l =Ws+l −Ws

(one can check direction that this is a Brownian Motion for the filtration (F̃l) = (Fs+l)) such
that ∫ t−s

0
σ(Φs,s+l(u))dWs+l =

∫ t−s

0
σ(Φs,s+l(u))d

(
W̃l +Ws

)
=

∫ t−s

0
σ(Φs,s+l(u))dW̃l.

In particular Φs,·(u) and Φ·−s(u) satisfy the same SDE just with a different Brownian Motion,
so by the uniqueness and hence uniqueness in law of solutions so SDEs, the two processes
have the same distribution.

2. We observe that

Φs,t(Φs(u)) = Φs(u) +

∫ t

s
b(Φs,r(Φs(u)))dr +

∫ t

s
σ(Φs,r(Φs(u)))dWr

and

Φt(u) = Φs(u) +

∫ t

s
b(Φr(u))dr +

∫ t

s
σ(Φr(u))dWr

hence

Φs,t(Φs(u))− Φt(u) =

∫ t

s
b(Φs,r(Φs(u)))− b(Φr(u))dr +

∫ t

s
σ(Φs,r(Φs(u)))− σ(Φr(u))dWr.

We can now take the square of both sides, using that (a + b)2 ≤ 2a2 + 2b2, and Hölder’s
Inequality in the time integral to see that

|Φs,t(Φs(u))− Φt(u)|2 ≤ 2(t− s)

∫ t

s
|b(Φs,r(Φs(u)))− b(Φr(u))|2dr

+

∣∣∣∣∫ t

s
σ(Φs,r(Φs(u)))− σ(Φr(u))dWr

∣∣∣∣2 .
Now we may take expectation and apply the Itô Isometry, followed by using the Lipschitz
properties of b and σ, to deduce the existence of a constant C dependent only on t − s and
the Lipschitz coefficients of b and σ such that

E
[
|Φs,t(Φs(u))− Φt(u)|2

]
≤ C

∫ t

s
E
[
|Φs,r(Φs(u))− Φr(u)|2

]
dr

having also used Fubini-Tonelli to interchange expectation and integration. Now, exactly as
we did in Exercise 1.3, we apply the Grönwall Inequality with α = 0 as the above reads

ψt ≤ C

∫ t

s
ψrdr
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with ψt = E
[
|Φs,t(Φs(u))− Φt(u)|2

]
, to deduce that

E
[
|Φs,t(Φs(u))− Φt(u)|2

]
= 0.

This implies that
|Φs,t(Φs(u))− Φt(u)|2 = 0

P−a.s., and in particular there is a set Ωt of full probability on which the identity holds. To
show indistinguishability we need a set of full probability such that the identity holds for all
t. In particular we may take all rational tn and define

Ω̃ =
⋂

s≤tn∈Q
Ωtn

which is a set of full probability such that |Φs,t(Φs(u)) − Φt(u)|2 = 0 holds for all rational
times everywhere on Ω̃. By continuity of the processes then this equality must hold for all
times, hence the result.

3. Similarly to the above, we have that

|Φs(u)− Φs(v)|2 ≤ 3|u− v|2 + 3s

∫ s

0
|b(Φr(u))− b(Φr(v))|2dr

+ 3

∣∣∣∣∫ s

0
σ(Φr(u))− σ(Φr(v))dWr

∣∣∣∣2 .
Now we take supremum over s ∈ [0, t] on both sides to see that

sup
s∈[0,t]

|Φs(u)− Φs(v)|2 ≤ 3|u− v|2 + 3t

∫ t

0
|b(Φr(u))− b(Φr(v))|2dr

+ 3 sup
s∈[0,t]

∣∣∣∣∫ s

0
σ(Φr(u))− σ(Φr(v))dWr

∣∣∣∣2 .
followed by expectation, then applying Doob’s Maximal Inequality and the Itô Isometry, as
well as the Lipschitz assumptions, then

E

[
sup
s∈[0,t]

|Φs(u)− Φs(v)|2
]
≤ 3E

[
|u− v|2

]
+ C

∫ t

0
E|Φr(u)− Φr(v)|2dr

≤ 3E
[
|u− v|2

]
+ C

∫ t

0
E

[
sup

s∈[0,r]
|Φs(u)− Φs(v)|2

]
dr

after which applying Grönwall’s Inequality gives the result.

Exercise 8.4

Consider the Ornstein-Uhlenbeck SDE

dXt = −aXtdt+ σdWt

for constants a, σ, and posed for an initial condition X0 ∼ N(x0, v0) independent of W .
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1. Show that X satisfies, P− a.s.,

Xt = e−atX0 + σe−at

∫ t

0
easdWs.

2. Show that

Cov(Xs, Xt) = e−a(t+s)

[
v0 +

σ2

2a
(e2a(t∧s) − 1)

]
.

Proof. hi

1. We apply the Itô Formula for f(t, x) = eatx, following the same Ansatz as for Exercise 1.5.
Then

∂

∂t
f(t, x) = aeatx,

∂

∂x
f(t, x) = eat,

∂2

∂x2
f(t, x) = 0

so by the Itô Formula for f(t,Xt),

eatXt = ea·0X0 +

∫ t

0
aeasXsds+

∫ t

0
easdXs

= X0 +

∫ t

0
aeasXsds+

∫ t

0
eas (−aXs + σdWs)

= X0 + σ

∫ t

0
easdWs

for which multiplying by e−at gives the result.

2. Of course Cov(Xs, Xt) = E(XsXt) − E(Xs)E(Xt) and from the first part, using that the
stochastic integral is a martingale hence of constant (zero) expectation,

E(Xt) = e−atx0

therefore
E(Xs)E(Xt) = e−a(t+s)x20. (1)

Additionally,

E(XsXt) = e−a(t+s)
E

[
X2

0 + σ2
∫ t

0
eardWr

∫ s

0
eardWr +X0σ

∫ t

0
eardWr +X0σ

∫ s

0
eardWr

]
= e−a(t+s)

E

[
X2

0 + σ2
∫ t

0
eardWr

∫ s

0
eardWr

]
due to independence of X0 and W , hence independence of X0 and the stochastic integral. We
use that for a general square integrable martingale M with s < t,

E(MtMs) = E [E(MtMs|Fs] = E [MsE(Mt|Fs] = E(M
2
s ).

So applying this result to the stochastic integral, followed by the Itô Isometry,

E

[∫ t

0
eardWr

∫ s

0
eardWr

]
=

∫ s

0
e2ardr =

1

2a
(e2as − 1).
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Thus,

E(XsXt) = e−a(t+s)

[
E(X2

0 ) +
σ2

2a
(e2as − 1)

]
from which we subtract (1) and observe that

v0 = E(X
2
0 )− x20

to conclude.

Exercise 8.5

Let M be a continuous local martingale. Define the process N by Nt = eMt− 1
2
[M ]t , known as

the exponential martingale.

1. Prove that N is a continuous local martingale.

2. Show that N is a genuine martingale if and only if E(Nt) = 1 for all t ≥ 0.

Proof. hi

1. Define the semi-martingale Y by Yt = Mt − 1
2 [M ]t and function f(x) = ex, so applying the

Itô Formula for f(Y ),

eYt = eY0 +

∫ t

0
eYsdYs +

1

2

∫ t

0
eYsd[Y ]s

= eM0 +

∫ t

0
eYsdMs −

1

2

∫ t

0
eYsd[M ]s +

1

2

∫ t

0
eYsd[M ]s

= eM0 +

∫ t

0
eYsdMs

where we have used that [Y ] = [M ]. This is a continuous local martingale.

2. If N is a martingale it has constant expectation, so E(Nt) = 1. We prove the converse. As N
is a non-negative continuous local martingale it is a super-martingale, as for (τn) a localising
sequence of stopping times and by Fatou,

E(Nt|Fs) ≤ lim
n→∞

E (N τn
t |Fs) = lim

n→∞
N τn

s = Ns.

We now use that a super-martingale of constant expectation is a martingale to conclude.
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